Gen 1 used more efficient designs to produce electrons from photons, so the devices worked at lower light levels with slightly less image distortion. But they retained the same problems with burning out the image tubes as the Gen 0 models. Gen 1 technology produced the "starlight scopes" used by the military during the Vietnam era.
Gen 2 night vision technology incorporated a microchannel disk into the scope design, placing the disk between the photon capture plate and the cathode image tube. The microchannel disk is perforated with millions of tubes (channels), passing the electrons through without compressing the stream through the funnel of the Gen 0 and Gen 1 scopes, decreasing distortion. The electrons are multiplied thousands of times as they pass through the channels, producing a clearer image from less light.
Some night vision devices of foreign manufacture, especially those offered as military surplus, claim to use Gen 2 technology. Many of these lack the microchannel plate, so they are really Gen 1, with the inherent problems with short image tube service life.
Gen 3 is the state of the art. The microchannel disk has more and smaller holes and the electrons that pass through them are multiplied even more than before. This improves the resolution of the image, and works with even less light. Gallium-arsenide photocathode image tubes convert the electrons flowing from the microchannel plate more efficiently. The images are still monochrome (no color), but the difference is dramatic, especially with telescopic images.
Night vision devices use a standard of line-pairs-per-millimeter (lp/mm) to measure resolution of the image intensifiers. Larger numbers indicate superior resolution, or clarity of image. Some advertisements for Gen 2 night vision devices (NVDs) claim 52 lp/mm resolution, but that may be snake oil. Representatives from ITT Night Vision, one of the most advanced manufacturers of Gen 3 gear, say their best equipment renders about 51 lp/mm, and standard Gen 3 units produce about 45 lp/mm.