To the casual observer, a discussion of "flashlight technology" seems like gilding the lily. You push a button, a light comes on; you push it again, the light goes off. Not very technical. Forty years ago, that would have been the extent of the discussion. Today, our flashlights use a wide variety of power sources and types of illumination, and generally cost a lot more than the $1.98 one would pay for a two-cell light at the hardware store.
Up until relatively recently, the incandescent bulb was the source of most artificial light, both in the home and in the typical flashlight. A standard incandescent bulb uses a tungsten wire, aka a filament, strung between two electrodes. The filament is contained within a sealed glass chamber (the bulb) from which the air has been extracted to a near-vacuum and partially replaced with nitrogen, a halogen gas, or a mixture of the two. When current is passed through the filament, it heats up and glows brightly. The absence of oxygen inside the bulb keeps it from burning up. Break that vacuum seal while the light is on, and you'll see a brief white flash as the filament oxidizes and evaporates.









